Summary of Local, State and Federal Vapor Intrusion Guidance (Challenges, Set Backs and Path Forward)

The SAM Fall Forum September 16, 2010

Speakers

Kevin Heaton (San Diego County DEH)
Blayne Hartman (Hartman Env. Geoscience)
Todd Ririe (BP Arco)

Soil Vapor Surveys are generally used for two different purposes

- Identify the horizontal distribution of contamination to refine future investigations
- Collection of soil gas to be used in health risk evaluations

Use to identifying horizontal distribution of contamination

Use of passive soil gas sampling

- Provides qualitative results
- Used at sites where little is known about the source location.
- Requires placement in a grid pattern
- Where residual groundwater or soil contamination is likely to be shallow
- Sampling occurs one time at a single shallow depth

Use of active soil gas sampling

- Provides quantitative results
- Used at sites where the subsurface geology is understood and the depth of contamination is either shallow or deep.
- Sample locations are more authoritative
- Sampling occurs one or more times but possibly at multiples depths

Collection of Soil Gas for Health Risk

- Installation of permanent sample probes (Probe in ground more than 24-hours)
- Sampling at more than one depth (dependent on depth of residual source)
- Sampling multiple events
- Must have a good understanding of the subsurface geology/stratigraphy
- Must have a good understating of the distribution of contamination

Soil's physical properties

- The modeled vapor pathway must address the heterogeneous characteristics of the soil media.
- The preferred vapor pathway will be that of the soils with the highest permeability and lowest moisture content.
- A sufficient number of soil samples should be taken to address the variability of the soil
- Numerical averaging of soil properties in most cases is not appropriate.

Vapor Sample Size

- Use of syringes (60 cc) Preferred for in-situ soil gas samples
- Suma Canister (500 cc) Acceptable for sub-slab samples
- Suma Canister (1 liter to 15 liters) Such excessive volume is discouraged

Leak Testing

- To evaluate ambient air intrusion from the surface (probe integrity)
- To evaluate ambient air intrusion from the sampling equipment.
- Use of tracer VOCs or inert gases (ie: helium)

<u>VOCs</u> <u>HVOCs</u>

Benzene PCE

Toluene TCE

Ethyl benzene TCA

Xylene

MTBE

TBA

Napthalene

Collection of biogenic gases

Oxygen (O2)

Carbon Dioxide (CO₂)

Methane (CH₄)

- Use of default values vs. measured values
- SAM Manual Guidance vs. Company In-house Guidance
- Vapor Risk 2000 vs. DTSC-J&E Model vs. EPA-J&E Model

Integration of Field Data into Risk Evaluation

- Use of highest value
 - Tier 1 evaluation

Highest Value

Concentration

$$@5' = 50 \text{ ug/l}$$

$$@15' = 100 \text{ ug/l}$$

Risk

$$@5' = 10E-6$$

$$@15' = 7E-6$$

Integration of Field Data into Risk Evaluation

- Use of highest value
- Numerical averaging measured values
 - Tier 2 evaluation
 - Generally uniform distribution of vapors below the existing or proposed structures

Numerical Average

Concentration

$$@5' = 8.9 \text{ ug/l}$$

$$@15' = 36.6 \text{ ug/l}$$

Risk

$$@5' = 2E-6$$

$$@15' = 3E-6$$

Integration of Field Data into Risk Evaluation

- Use of highest value
- Numerical averaging measured values
- Weighted averaging of measured values
 - Tier 2 evaluation
 - Generally non-uniform distribution of vapors below the existing or proposed structures.

Weighted Average

Concentration

$$@5' = 5.4 \text{ ug/l}$$

$$@15' = 28.4 \text{ ug/l}$$

Risk

$$@5' = 1E-6$$

$$@15' = 2E-6$$